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 A theory is presented for the determination of the ef fects of a flowing fluid on the
 vibration characteristics of an open ,  anisotropic cylindrical shell submerged and subjected
 simultaneously to an internal and external flow .  The case of an open shell partially or
 completely filled with liquid is also investigated .  The structure may be uniform or
 nonuniform in the circumferential direction .  The formulation used is a combination of
 finite element method and classical shell theory .  The displacement functions are derived
 from exact solutions of Sanders’ shell equations .  The velocity potential and Bernoulli’s
 equation for a liquid finite element yield an expression for fluid pressure as a function of
 the nodal displacements of the element and three forces (inertial ,  centrifugal and Coriolis)
 of the moving fluid .  An analytical integration of the fluid pressure over the liquid element
 leads to three components :  mass ,  stif fness and damping matrices .  Calculations are given to
 illustrate the dynamic behaviour of open and closed cylindrical shells subjected to a flowing
 fluid ,  as well as shells partially or completely filled with liquid .  Reasonable agreement is
 found with other theories and experiments .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 K NOWLEDGE   OF   THE   VIBRATION   CHARACTERISTICS  of fluid-filled cylindrical shells and
 panels is of considerable practical interest ,  since cylindrical shells and panels are
 commonly used to contain or convey fluids .  There are many ways in which the presence
 of the fluid may influence the dynamics of the structure .  If the structure contains a
 stationary gas at low pressure ,  then the vibration of the shell dif fers only slightly from
 that of the same shell  in  y  acuo .  If the fluid is compressible ,  the compressibility of the
 fluid alters the ef fective stif fness of the system .  Also ,  if the density of the fluid is
 relatively high ,  as in the case of a liquid ,  then the fluid exerts considerable inertial
 loading on the shell ,  and this results in a significant lowering of the resonant
 frequencies .  Other ef fects of coupled fluid – shell motions occur when the fluid is
 flowing .  Depending upon the boundary conditions ,  if the flow velocities are high ,
 buckling or oscillatory flexural instabilities are possible .

 The dynamics of coupled fluid – shells were reviewed extensively by Brown (1982) ,
 Au-Yang (1986) ,  Paidoussis & Li (1993) and others (Mistry & Menenzes 1995 ;  Harari
 et al .  1994 ;  Cheng 1994 ;  Han & Liu 1994 ;  Terhune & Karim-Panahi 1993 ;  Brenneman
 & Au-Yang 1992 ;  Endo & Tosaka 1989 and Goncalves & Batista 1987) .  There have
 been few analyses of closed cylindrical shells having axially varying thickness .  Similarly ,
 while there is extensive literature relevant to the vibration of empty open cylindrical
 shells (cylindrical panels) ,  no analysis has been found of open cylindrical shells ,
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 circumferentially nonuniform ,  totally submerged and subjected simultaneously to an
 internal and external flow .

 The purpose of this study is to present a method for the dynamic and static analysis
 of open ,  thin ,  anisotropic cylindrical shells containing flowing fluid .  The structure may
 be uniform or nonuniform in the circumferential direction and we consider the problem
 of open cylindrical shells which are freely simply supported ( V  5  W  5  0) along their
 curved edges and have arbitrary straight-edge boundary conditions .

 The method is a hybrid of the finite element method ,  and classical shell and
 fluid-dynamics theories .  The structure is subdivided into cylindrical panel-segment
 finite elements .  The displacement functions are derived from Sanders’ (1959) equation
 of thin cylindrical shells .  In this approach ,  it is possible to determine the mass and
 stif fness matrices of the individual finite elements by exact analytical integration .
 Accordingly ,  this method is more accurate than the more usual finite element methods
 based on polynomial displacement functions .

 To account for the fluid ef fect on the structure ,  a panel finite-fluid element bounded
 by two nodal lines is considered .  By solving the equations of motion for the fluid
 element ,  an expression for fluid pressure as a function of the displacements of the
 element is obtained .  Analytical integration for the pressure distribution along the
 element yields three components :  the mass ,  stif fness and damping matrices for a fluid
 element .  Global matrices are ,  then ,  obtained by superimposing the individual matrices .
 The eigenvalue and eigenvector problem is solved by means of the equation reduction
 technique .

 The hybrid approach (finite element—shell theory—fluid theory) has been applied
 with satisfactory results to the dynamic linear and nonlinear analysis of cylindrical
 (Lakis & Paı ̈ doussis 1971 ,  1972d ,  1973 ;  Lakis 1976a ,  b ;  Lakis ,  Sami & Rousselet 1978 ;
 Lakis & Laveau 1991 and Lakis & Sinno 1992) ,  conical (Lakis ,  Van Dyke & Ouriche
 1992) ,  spherical (Lakis ,  Tuy & Selmane 1989) ,  isotropic and anisotropic ,  uniform
 and axially nonuniform shells both empty and liquid filled .  This method has been
 applied also to the dynamic analysis of circular and annular plates (Lakis & Selmane
 1990a ,  b) and to an open anisotropic and circumferentially nonuniform cylindrical
 shell (Selmane & Lakis 1995) .  This study is an attempt to determine the vibration
 of a circumferentially nonuniform open cylindrical shell ,  subjected to a flowing fluid .
 The case of an open cylindrical shell partially or completely filled with liquid is also
 studied .

 2 .  DETERMINATION OF THE DISPLACEMENT FUNCTIONS

 Sanders’ (1959) equations for thin ,  cylindrical shells ,  in terms of axial ,  tangential and
 radial displacements ( U ,  V ,  W  ) of the mean surface of the shell (Figure 1) and in terms
 of element  P i j   of the anisotropic matrix of elasticity [ P ] are

 L 1 ( U ,  V ,  W ,  P i j )  5  0 ,  L 2 ( U ,  V ,  W ,  P i j )  5  0 ,  L 3 ( U ,  V ,  W ,  P i j )  5  0 ,  (1)

 where  L k   ( k  5  1 ,  2 ,  3) are three linear dif ferential operators ,  the form of which is given
 fully in Appendix A .
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 Figure 1 .  Open cylindrical shell geometry .

 The strain-displacement relation is given by
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 The finite element used is shown in Figure 2 .  It is a cylindrical panel segment defined

 by two line-nodes ,   i  and  j .  Each node has four degrees of freedom :  three displacements
 (axial ,  circumferential and radial) and one rotation .  The panels are assumed to be
 freely simply supported ( V  5  W  5  0) along their curved edges and to have arbitrary
 straight edge boundary conditions .

 For motions associated with the  m th axial wave number ,  we may write

 5  U ( x ,  θ  )
 W  ( x ,  θ  )
 V  ( x ,  θ  )

 6  5 3  cos  m π x  / L
 0
 0

 0
 sin  m π x  / L

 0

 0
 0

 sin  m π x  / L
 4 5  U m ( θ  )

 W m ( θ  )
 V m ( θ  )

 6  5  [ T m ] 5  U m ( θ  )
 W m ( θ  )
 V m ( θ  )

 6 .  (3)

 By substituting equation (3) into equation (1) and letting

 U m ( θ  )  5  A e h θ  ,  V m ( θ  )  5  B e h θ  ,  W m ( θ  )  5  C e h θ  ,  (4)
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 Figure 2 .  (a) Finite element idealization ;  (b) nodal displacements at node  i . N  is the number of finite

 elements .

 we obtain

 5  U ( x ,  θ  )
 W  ( x ,  θ  )
 V  ( x ,  θ  )

 6  5  [ T m ][ R ] h C j ,  (5)

 where [ R ] is a (3  3  8) matrix given by

 R (1 ,  j )  5  a j e
 h j θ  ,  R (2 ,  j )  5  e h j θ  ,  R (3 ,  j )  5  b j e

 h j θ ;  j  5  1 ,  .  .  .  ,  8 ;  (6)

 h j   (  j  5  1 ,  .  .  .  ,  8) are the roots of the characteristic equation of the empty panel .  As  A ,
 B  and  C  are not independent ,  we may write  A  5  a C  and  B  5  b C ,  which determine  a j

 and  b j  .  h C j   is a vector of eight constants which are linear combinations of the  C j .  The
 eight  C j   are the only free constants ,  which must be determined from eight boundary
 conditions ,  four at each straight edge of the finite element .

 We now express the nodal displacement vectors as follows :

 h d i j  5 H U m i  ,  W m i  ,  S d W m

 d θ  D
 i
 ,  V m i J T

 .  (7)

 Each  h d i j   may be determined from equation (5) ,  where  θ   in [ R ] now has a definite
 value ,   θ  5  0 or  θ  5  f  ,  as the case may be ;  hence we obtain

 H d i

 d j
 J  5  [ A ] h C j ,  (8)

 where the elements of matrix [ A ] are determined from those of matrix [ R ] and given
 by :

 A (1 ,  j )  5  a j  ,  A (2 ,  j )  5  1 ,  A (3 ,  j )  5  h j  ,

 A (4 ,  j )  5  b j  ,  A (5 ,  j )  5  a j e
 h j f  ,  A (6 ,  j )  5  e h j f  ,  (9)

 A (7 ,  j )  5  h j e
 h j f  ,  A (8 ,  j )  5  b j e

 h j f ;  j  5  1 ,  .  .  .  ,  8
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 Finally ,  combining equation (5) and (8) ,  we obtain

 5  U ( x ,  θ  )
 W  ( x ,  θ  )
 V  ( x ,  θ  )

 6  5  [ T m ][ R ][ A 2 1 ] H d i

 d j
 J  5  [ N ] H d i

 d j
 J ,  (10)

 which defines the displacement functions .

 3 .  MASS AND STIFFNESS MATRICES FOR EMPTY FINITE ELEMENTS

 The strains are related to the displacements through equations (2) ;  accordingly ,  we may
 now express  h »  j   in terms of  d i   and  d j  ,  and after lengthy manipulations we obtain

 h »  j  5 F [ T m ]
 0

 0
 [ T m ]

 G [ Q ][ A 2 1 ] H d i

 d j
 J  5  [ B ] H d i

 d j
 J ,  (11)

 where [ Q ] is a (6  3  8) matrix given in Appendix B .
 The corresponding stresses may be related to the strains by the elasticity matrix [ P ] :

 h s  j  5  [ P ] h »  j  5  [ P ][ B ] H d i

 d j
 J .  (12)

 The matrix  P  of an anisotropic shell is given by

 (13) [ P ]  5

 p 1 1
 p 2 1
 0

 p 4 1
 p 5 1
 0

 p 1 2
 p 2 2
 0

 p 4 2
 p 5 2
 0

 0
 0

 p 3 3
 0
 0

 p 6 3

 p 1 4
 p 2 4
 0

 p 4 4
 p 5 4
 0

 p 1 5
 p 2 5
 0

 p 4 5
 p 5 5
 0

 0
 0

 p 3 6
 0
 0

 p 6 6

 .C D
 The elements  p i j   of [ P ] characterize the shell anisotropy ,  which depends on the
 mechanical properties of the material of the structure .

 The mass and stif fness matrices ,  [ m s ] and [ k s ] respectively ,  for one finite element
 may be written as follows :

 [ m s ]  5  r s t  E L

 0
 E f

 0
 [ N ] T  [ N ]  d A  and  [ k s ]  5 E L

 0
 E f

 0
 [ B ] T  [ P ][ B ]  d A ,  (14)

 where  r s   is the density of the shell ,   t  its thickness ,  d A  a surface element ,  [ P ] the
 elasticity matrix and the matrices [ N ] and [ B ] are obtained from equations (10) and
 (11) ,  respectively .

 The matrices [ m s ] and [ k s ] were obtained analytically by carrying out the necessary
 matrix operations and integration over  x  and  θ   in equation (14) .  The global matrices
 [ M s ]   and [ K s ] may be obtained ,  respectively ,  by superimposing the mass [ m s ] and
 stif fness [ k s ] matrices for each individual panel finite element .  See (Selmane & Lakis
 1995) for more details .

 4 .  BEHAVIOUR OF THE FLUID-SHELL INTERACTION

 4 . 1 .  E QUATIONS   OF  M OTION

 The dynamic behaviour of an open shell subjected to a pressure field can be
 represented by the following system :

 [[ M s ]  2  [ M f  ]] h d ̈  j  2  [ C f  ] h d ~  j  1  [[ K s ]  2  [ K f  ]] h d  j  5  h F  j ,  (15)
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 where  h d  j   is the displacement vector ,  [ M s ] and [ K s ] are ,  respectively ,  the mass and
 stif fness matrices of the system  in  y  acuo ;  [ M f  ] and [ C f  ] and [ K f  ] represent the inertial ,
 Coriolis and centrifugal forces of the liquid flow ,  and  h F  j   represents the external forces .

 4 . 2 .  A SSUMPTIONS

 We assume here that the structure is subjected only to potential flow which induces
 inertial ,  Coriolis and centrifugal forces to participate in the vibration pattern .  These
 forces are coupled with the elastic deformation of the shell .

 The mathematical model which is developed is based on the following hypotheses :  (i)
 the fluid flow is potential ;  (ii) vibration is linear (small deformations) ;  (iii) since the
 flow is inviscid ,  there is no shear and the fluid pressure is purely normal to the shell
 wall ;  (iv) the fluid mean velocity distribution is assumed to be constant across a shell
 section ;  and (v) the fluid is incompressible .

 4 . 3 .  M ASS ,  S TIFFNESS   AND  D AMPING  M ATRICES   OF   THE  M OVING  F LUID

 With the assumptions of Section 4 . 2 ,  the velocity potential must satisfy the Laplace
 equation .  This relation is expressed in the cylindrical coordinate system by

 =  2 F  5
 1
 r

 

  r
 S r

  F

  r
 D  1

 1
 r 2

  2 F

  θ  2  1
  2 F

  x 2  5  0 ;  (16)

 F   is the potential function that represents the velocity potential .  Therefore ,  we have

 V x  5  U x  1
  F

  x
 ,  V θ  5

 1
 R

  F

  θ
 ,  V r  5

  F

  r
 ,  (17)

 where  U x   is the mean velocity along the shell in the  x -direction .  The remaining
 components of velocity are disturbance or perturbation velocity components ;   V x  , V θ
 and  V r   are respectively the axial ,  tangential and radial components of the fluid velocity .

 The Bernouilli equation is given by :

  F

  t
 1

 1
 2

 V  2  1
 P
 r f
 U

 r 5 j
 5  0 .  (18)

 Introducing equation (17) into equation (18) and taking into account only the linear
 terms ,  we find the dynamic pressure ,   P :

 P u  5  r f u H  F u

  t
 1  U x u

  F u

  x
 J U

 r 5 j
 ,  (19)

 in which the subscript  u  represents ‘‘internal’’ or ‘‘external’’ fluid as the case may be :

 if  u  5  i  then  j  5  R i  5  R  2  1 – 2 t ;  (20)

 if  u  5  e  then  j  5  R e  5  R  1  1 – 2 t .  (21)

 A full definition of the flow requires that a condition be applied to the structure –
 fluid interface .  The impermeability condition ensures contact between the shell and the
 fluid .  This should be

 V r 3 r 5 R  5
  F

  r
 U

 r 5 R
 5 S  W

  t
 1  U x

  W
  x

 1  1 – 2 U 2
 x

  2 W

  x 2  D U
 r 5 R

 .  (22)

 From the theory of shells [see equation (5)] ,  we have

 W  ( x ,  θ  ,  t )  5  O 8
 j 5 1

 C j e
 h j θ  sin

 m π x

 L
 e i v t .  (23)
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 Assuming then ,

 F ( x ,  θ  ,  r ,  t )  5  O 8
 j 5 1

 R j ( r ) S j ( x ,  θ  ,  t )  (24)

 and applying the impermeability condition ,  equation (22) ,  with the radial displacement
 given by relation (23) ,  we determine the function  S j ( x ,  θ  ,  t ) .  Introducing this explicit
 term  S j ( x ,  θ  ,  t ) into equation (24) and then into equation (19) ,  we find a relation for the
 dynamic pressure as a function of the displacement  W j   and the function  R j ( r ) :

 P u  5  2 r f  O 8
 j 5 1

 R j ( r )
 R j ’( R )

 F W ̈  j  1  2 U x u W ~  j 9  1
 U 2

 xu

 2
 W ~  j 0  1  U 2

 xu W j 0  1
 U 3

 xu

 2
 W j - G  (25)

 where (  )’ ,  (  ) ?  and (  ) 9  represent   (  ) /  r ,   (  ) /  t  and   (  ) /  x ,  respectively .
 By using relation (16) ,  we obtain the following Bessel equation :

 r 2  d 2 R j ( r )
 d r 2  1  r

 d R j ( r )
 d r

 1  R j ( r ) F S im π
 L

 D 2

 r 2  2  (i h j )
 2 G  5  0 ,  (26)

 where i is the complex number ,  i 2  5  2 1 ,  and  h j   is the complex solution of the
 characteristic equation .

 The general solution of equation (26) is given by :

 R j ( r )  5  A J i h j S im π
 L

 r D  1  B Y i h j S im π
 L

 r D  (27)

 where  J i h j   and  Y i h j   are ,  respectively ,  the Bessel functions of the first and second kind of
 order i h j

 .
 For internal flow ,  the solution (27) must be finite on the axis of the shell ( r  5  0) ;  this

 means we have to set the constant  B  equal to zero .  For external flow ( r  5  ̀  ) ;  this
 means that the constant  A  is equal to zero .  When the shell is simultaneously subjected
 to internal and external flow ,  we have to take the complete solution (27) .

 Finally ,  we obtain the equation for the pressure on the wall as follows :

 P u  5  2 r u  O 8
 j 5 1

 Z u j S im π R u

 L
 D F W ̈  j  1  2 U x u W ~  j 9  1

 U 2
 xu

 2
 W ~  j 0  1  U 2

 xu W j 0  1
 U 3

 xu

 2
 W j - G  (28)

 where (  ) ?  and (  ) 9  represent   (  ) /  t  and   (  ) /  x ,  respectively ,  and

 Z u j S im π R u

 L
 D  5

 R u

 i h j  2
 im π R u

 L
 J i h j 1 1 ( im π R u  / L )
 J i h j

 ( im π R u  / L )

 if  u  5  i ,  (29)

 Z u j S im π R u

 L
 D  5

 R u

 i h j  2
 im π R u

 L
 Y i h j 1 1 ( im π R u  / L )
 Y i h j

 ( im π R u  / L )

 if  u  5  e ,  (30)

 where  h j   (  j  5  1 ,  .  .  .  ,  8) are the roots of the characteristic equation of the empty shell ;
 J i h j   and Y i h j   are ,  respectively ,  the Bessel functions of the first and second kind of order
 i h j

 ;  m  is the axial mode number ,   R  the mean radius of the shell ,  and  L  its length ;  the
 subscript  u  is equal to  i  for internal flow and is equal to  e  for external flow .

 By introducing the displacement function (10) ,  into the dynamic pressure expression
 (28) and performing the matrix operation required by the finite element method ,  the
 mass ,  damping and stif fness matrices for fluid are obtained by evaluating the following
 integral :

 E
 A

 [ N ] T  h P u j  d A ,  (31)
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 leading to
 [ m f  ]  5  [ A 2 1 ] T  [ S f  ][ A 2 1 ] ,  [ c f  ]  5  [ A 2 1 ] T  [ D f  ][ A 2 1 ] ,  (32 ,  33)

 [ k f  ]  5  [ A 2 1 ] T  [ G f  ][ A 2 1 ] .  (34)

 The matrix [ A ] is given by equation (9) and the elements of [ S f  ] ,  [ D f  ] and [ G f  ] are
 given by

 S f  ( r ,  s )  5  2
 RL
 2

 I r s ( r i Z i s  2  r e Z e s ) ,  (35)

 D f  ( r ,  s )  5
 Rm  2 π  2

 4 L
 I r s ( r i U

 2
 xi Z i s  2  r e U 2

 xe Z e s ) ,  (36)

 G f  ( r ,  s )  5
 Rm  2 π  2

 2 L
 I r s ( r i U

 2
 xi Z i s  2  r e U 2

 xe Z e s ) ,  (37)

 where  r , s  5  1 ,  .  .  .  ,  8 ;   r   is the density of the fluid ,  and  U x   its velocity ;   Z  is defined by
 relations (29) and (30) ;  the subscript  i  means internal flow and  e  means external flow ;
 and  I r s   is defined by

 (38)
 I r s  5

 1
 ( h r  1  h s )

 [e ( h r 1 h s ) f  2  1)  for  h r  1  h s  ?  0 ,

 I r s  5  f  for  h r  1  h s  5  0 ,

 in which  r ,  s  5  1 ,  .  .  .  8 ;   h   is the root of the characteristic equation of the empty shell
 and  f   is the angle for one finite element .

 Finally ,  the global matrices [ M f  ] ,  [ C f  ] and [ K f  ] may be obtained ,  respectively ,  by
 superimposing the mass [ m f  ] ,  damping [ c f  ] and stif fness [ k f  ] matrices for each
 individual fluid finite element .

 5 .  EIGENVALUE AND EIGENVECTOR PROBLEM

 The eigenvalue and eigenvector problem is solved by means of the equation reduction
 technique .  Equation (15) may be rewritten as follows :

 3  [0]

 1
 v  2

 0
 [ M ]

 1
 v  0

 [ M ]

 1
 v  0

 [ C ] 4 H d ̈

 d ~  J  1 3  2
 1

 v  0
 [ M ]

 [0]

 [0]

 [ K ]
 4 H d ~

 d
 J  5  h 0 j ,  (39)

 where
 [ M ]  5  [ M s ]  2  [ M f  ] ,  [ K ]  5  [ K s ]  2  [ K f  ] ,  [ C ]  5  [ C f  ] ;  (40)

 [ M s ] and [ K s ] are the global mass and stif fness matrices for the empty shell ,  [ M f  ] ,  [ C f  ]
 and [ K f  ] are the global mass ,  damping and stif fness matrices for the fluid ;   v  0  5  p 1 1  is
 the first element of the elasticity matrix .

 The eigenvalue problem is given by

 u [ DD ]  2  L [ I ] u  5  0 ,  (41)
 where

 [ DD ]  5 3  [0]

 2
 1

 v  2
 0

 [ K ] 2 1 [ M ]

 [ I ]

 2
 1

 v  0
 [ K ] 2 1 [ C ] 4  (42)

 and  L  5  1 / ( v  2
 0 v

 2 ) ;   v   is the radian natural frequency of the system .
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 If the velocity of the fluid ( U x  5  0) ,  the eigenvalue problem in this particular case
 may be reduced to

 U  1
 v  2

 0
 [ K ] 2 1 [ M ]  2  L [ I ] U  5  0 ,  (43)

 and  v  5  1 / ( v  0 L ) .
 Matrices [ K ] ,  [ M ] and [ C ] are square matrices of order NDF( N  1  1)  2  J ,  where NDF

 is the number of degrees of freedom at each node ,   N  is the number of finite elements in
 the structure and  J  is the number of constraints applied .

 6 .  CALCULATIONS AND DISCUSSION

 Calculations have already been conducted to test the theory in the case of  empty  open
 and closed shells .  The free vibrations of uniform and circumferentially nonuniform ,
 isotropic and orthotropic open and closed shells were obtained for a variety of
 boundary conditions (Selmane & Lakis 1995) .  The computed natural frequencies were
 compared to those obtained by other theories and from experiments ;  the results were
 in agreement within a range of  Ú 5% .

 Here we present some calculations to test the theory in the case of  liquid - filled  open
 and closed cylindrical shells .  In the case when the shell is subjected to flowing fluid ,  the
 dynamic stability of this type of problem is analysed .

 6 . 1 .  F REE  V IBRATION   OF  C LOSED   AND  O PEN  C YLINDRICAL  S HELLS  P ARTIALLY   OR

 C OMPLETELY  F ILLED   WITH  L IQUID

 6 . 1 . 1 .  Shell completely filled with liquid

 (a) For the first set of calculations ,  we determine the frequency parameters ( Ω ) for
 dif ferent values of  R  / t  and  L / R  for shells completely filled with liquid (internal) .

 The results obtained (with 10 elements) for  n  5  1 are given in Table 1 in the case of
 free simply supported shells .  We conclude that ,  as a result of the lateral pressure
 exerted by the liquid on the structure ,  the frequency parameters ( Ω ) depend both on

 T ABLE  1
 Vibration parameter ( Ω ) of cylindrical shells simply supported at both ends and filled with

 liquid ;   n  5  1 , m  5  1 ,  …  5  0 ? 3 ,  r i  5  1000  kg / m 3  and  Ω  5  v R 4 r  (1  2  …  2 ) / E )

 R  / t
 L / r

 20  50  100  200  Baron & Bleich (1954) ;
 all values of  R  / t

 Empty
 2 ? 0

 Full

 0 ? 5775

 0 ? 4196

 0 ? 5900

 0 ? 3288

 0 ? 6067

 0 ? 2629

 0 ? 5711

 0 ? 1810

 0 ? 5728

 —
 Empty

 4 ? 0
 Full

 0 ? 2572

 0 ? 1809

 0 ? 2581

 0 ? 1372

 0 ? 2594

 0 ? 1065

 0 ? 2603

 0 ? 07998

 0 ? 2569

 —
 Empty

 8 ? 0
 Full

 0 ? 08744

 0 ? 06020

 0 ? 08747

 0 ? 04489

 0 ? 08752

 0 ? 03424

 0 ? 08756

 0 ? 02269

 0 ? 0874

 —
 Empty

 10 ? 0
 Full

 0 ? 05911

 0 ? 04044

 0 ? 05911

 0 ? 03005

 0 ? 05913

 0 ? 02283

 0 ? 05914

 0 ? 01684

 0 ? 0592

 —
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 T ABLE  2
 Natural frequencies (Hz) of a simply supported closed cylindrical shell ,  both when empty

 and when completely filled with liquid

 Empty  Full (inside fluid)
 ————————————————–  ———————————————–

 ( m ,  n )
 Present
 method

 Experimental
 (Lindholm  et al .  1962)

 Present 
 method

 Experimental
 (Lindholm  et al .  1962)

 (1 ,  2)
 (1 ,  3)
 (1 ,  4)
 (1 ,  5)
 (1 ,  6)
 (1 ,  7)
 (2 ,  3)
 (2 ,  4)
 (2 ,  5)
 (2 ,  6)
 (2 ,  7)

 1133
 629
 655
 942

 1353
 1853
 2067
 1368
 1248
 1489
 1927

 1150
 640
 688
 995

 1430
 1938
 2070
 1430
 1313
 1570
 2050

 376
 234
 270
 422
 651
 940
 784
 568
 561
 714
 978

 375
 250
 300
 430
 680
 970
 813
 600
 625
 755

 1000

 L / R  and  R  / t ,  in contrast to the case of the empty shell ,  where the  R  / t  ratio has only a
 slight ef fect upon the results .
 (b)  Next ,  calculations were made for a steel cylindrical shell ,  simply supported at both
 ends ,  empty or completely filled with liquid .  The pertinent data are as follows :

 R  5  37 ? 7  mm ,  t  5  0 ? 229  mm ,  L  5  234  mm ,   …  5  0 ? 29 ,  r i  / r s  5  0 ? 128 .

 The ef fects of the inertial force were calculated by this theory assuming  U x  5  0 in
 equations (35) – (37) .  Table 2 shows some frequencies computed by the present method
 and compared with experimental results (Lindholm ,  Kan ̃  a & Abramson 1962) in the
 case of a closed cylindrical shell ,  both empty and completely filled with liquid .  The
 results obtained by the present method agree with experimental results to within 10% .
 The boundary conditions used by Lindholm  et al .  ( V  5  W  5  0) at both ends are similar
 to ours .  The dif ference between our method and the experimental results of Lindholm
 et al .  is between 0 ? 5% and 10% for the first two axial modes .

 6 . 1 . 2 .  Shells partially filled with liquid

 Here ,  we consider the case of a shell partially filled with liquid without taking into
 account the ef fects of the free surface .  No dynamic pressure is imposed on the liquid
 free surface and the superficial tension is also neglected .  This may be justified as
 follows :  the natural frequencies of the empty shells in the modes under consideration
 are likely to be high ,  whereas the natural frequencies of free surface phenomena are
 likely to be low ,  at least in the lowest modes ;  accordingly ,  coupling between the shell
 modes and the liquid free-surface modes may be expected to be weak .  However ,
 Lindholm  et al .  have found experimentally that there is a possibility of nonlinear
 coupling between the low frequency ,  free-surface modes and the shell modes ,  resulting
 in subharmonic excitation of the former while the shell itself is oscillating at high
 frequencies .

 In the case of vertical cylindrical shells ,  partially filled with liquid ,  it has been
 determined ,  by comparing the results of Mistry & Menenzes (1995) with those based
 on the theory presented by Lakis & Paı ̈ doussis (1971) ,  that these ef fects are negligible
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 for low frequencies (less than 3%) ,  but may go up to 30% for modes higher than seven
 ( m  $  7) .

 The principal cause of this phenomenon is attributed to the kinetic energy developed
 by the movement of the free surface ;  this ef fect diminishes the natural frequencies of
 the system as a function of the geometric and physical properties of the shell and of the
 axial and circumferential waves number .  However ,  the potential energy due to the
 elevation of the wave has little ef fect on natural frequencies ,  because this energy is very
 small compared to the energy of deformation of the shell .  On the other hand ,  the
 ef fect of free surface is negligible at higher values of circumferential mode number
 ( n  $  7) .  The dif ference between frequencies calculated by the two methods (with and
 without free-surface ef fects) is given by the dif ference of the kinetic energy developed
 by the free surface of the fluid versus the kinetic energy developed by lateral surface of
 the fluid .

 In the case of horizontal shells partially filled with liquid ,  the results might be
 dif ferent due to a larger free surface .  Nevertheless ,  our results presented here are an
 indication of the dynamic behaviour of such a system .  A paper ,  under preparation ,  will
 consider in detail the ef fects of the free surface in the case of both horizontal and
 vertical shells partially filled with liquid .

 In the case of a closed cylindrical shell ,  Figures 3 and 4 show some frequencies
 computed by the present method in which the liquid level was varied from zero to full ,
 in a cylinder with a horizontal axis .

 We see that ,  for some modes ,  the frequency decreases rapidly with increasing  d 1 / d  in
 the range 0  ,  d 1 / d  ,  1 / 4 approximately ,  and then decreases only slightly for higher
 fractional fillings .  For other modes ,  however ,  the frequencies decrease appreciably with
 increasing  d 1 / d  over the whole range of  d 1 / d ,  as might be expected .

 Next ,  we present some results for an open cylindrical shell partially or completely
 filled with liquid .  The open cylindrical shell is constructed of steel ,  is filled with water ,
 and is simply supported at its four edges .  The pertinent data are as follows (see
 Figure 1) :

 f T  5  180 8 ,  R  5  37 ? 7  mm ,  t  5  0 ? 229  mm ,
 L  5  234  mm ,  …  5  0 ? 29 ,  r i  / r s  5  0 ? 128 ,

 In Figure 5(a) ,  we see the behaviour of an open cylindrical shell ,  empty or filled with
 liquid ,  as a function of the number of circumferential modes .  For a given  m ,  the
 frequencies decrease to a minimum before they increase as the number of circumferen-
 tial waves ‘ n ’ is increased .  This behaviour was first observed for a shell  in  y  acuo  by
 Arnold & Warburton (1953) ,  who were able to explain it by a consideration of the
 strain energy associated with bending and stretching of the reference surface .  It may be
 concluded from their work ,  that at low  n  the bending strain energy is low and the
 stretching strain energy is high ;  while at the higher  n ,  the relative contributions from
 the two types of strain energy are reversed .  The interchange in the relative
 contributions of the bending and stretching strain energy as the circumferential wave
 number  n  is increased explains the decrease and subsequent increase in the natural
 frequencies indicated in Figure 5(a) .  An open cylindrical shell partially or completely
 filled with liquid will behave in the same way .

 Figure 5(b) presents the eigenvectors in the case of incomplete shells .  A closed
 cylinder ,  or any other shell undergoing vibrations ,  may be deformed in a variety of
 ways ,  as shown in Figure 3 where several configurations are given .  Viewed from one
 end ,  the vibration of the cylinder may consist of any number of waves distributed
 around the circumference .  Denoting the number of these waves by  n ,  we see ,  in Figure
 3 ,  cases of  n  equal to 2 ,  3 and 4 (empty or completely filled shell) .  When viewed from
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 Figure 3 .  Natural frequencies of a partially filled closed cylindrical shell supported at both ends as a
 function of liquid level ,   m  5  1 ;   R  5  37 ? 7  mm ,   t  5  0 ? 229  mm ,   L  5  234  mm ,   …  5  0 ? 29 ,  r i  / r s  5  0 ? 128 .

 its side ,  the deformation of the cylinder consists of a number of waves distributed along
 the length of a generator .  We obtain for example ,  for  n  5  4 ,  eight circumferential
 half-waves in the case of a complete shell (Figure 3) and four circumferential
 half-waves in the case of an incomplete shell [Figure 5(b)] .

 In the case of an open cylindrical shell partially filled with liquid ,  the curves of
 Figure 6 show a rapid decrease of the natural frequencies as  a 1 / a 2  increases from 0 to
 3 / 4 approximately ,  and then decrease only slightly for higher fractional fillings .

 To see the influence of the orientation of the shell ,  we present in Figure 7 the natural
 frequency as a function of the orientation of the shell and the free surface of the liquid
 (the liquid level :   a 1 / a 2  5  0 ? 64 at  a  5  0 ,  see Figure 6) .  We observe that the natural
 frequencies of the system decrease between the two extreme positions .  The reduction is
 about 11% for the two modes ( m  5  1 , n  5  2) and ( m  5  1 , n  5  7) .

 6 . 2 .  C LOSED  O RTHOTROPIC  C YLINDRICAL  S HELLS  S UBMERGED   IN   AN  I NCOMPRESSIBLE

 F LUID

 In this calculation ,  we analyse the transverse vibration of isotropic and orthotropic
 cylindrical shells submerged in an incompressible fluid ,  simply supported at both ends .
 This case was analysed before by Ramachandran (1979) who used the Rayleigh-Ritz
 procedure .  In Table 3 ,  the values of the material properties used in the calculations are
 shown .

 The natural frequencies of this shell-liquid system for  n  5  4 and 8 ,   m  5  1 , L / R  5  2
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 Figure 4 .  Natural frequencies of a partially filled closed cylindrical shell supported at both ends as a
 function of liquid level ,   m  5  2 ;   R  5  3 ? 7  mm ,   t  5  0 ? 229  mm ,   L  5  234  mm ,   …  5  0 ? 29 ,  r i  / r s  5  0 ? 128 .

 and 4 ,  and dif ferent material properties of the shell are given in Table 4 .  Four cases
 were studied ,  when the shell is empty ;  when the fluid is inside or outside the shell ;  and
 when the shell is submerged in a fluid .  If we compare our results with those of
 Ramachandran (1979) ,  we find that there is agreement within 6% in the case of the
 empty isotropic shell .  In the case of the submerged isotropic shell (internal and
 external fluid) ,  the agreement varies from 11 to 15% .  However ,  when the material of
 the shell is orthotropic ,  we find big dif ferences between the two models (in the order of
 98%) .  On the other hand ,  in the case of the empty orthotropic cylindrical shell ,  our
 model has been tested (Selmane & Lakis 1995) and the results have been found to be
 within 5% of those of Leissa (1973) .

 Our model combines the advantages of finite element method which can deal with
 more complex shells (variable thickness ,  nonuniform materials ,  various boundary
 conditions ,  etc . ) ,  and the precision of formulation which the use of displacement
 functions derived from shell theory contributes (Lakis  et al .  1992) .

 6 . 3 .  D YNAMIC  S TABILITY   OF  C LOSED   AND  O PEN  C YLINDRICAL  S HELLS  S UBJECTED   TO   A

 F LOWING  F LUID

 6 . 3 . 1 .  Closed cylindrical shell containing flowing fluid

 When the fluid is flowing ,  the shell is subjected to centrifugal ,  Coriolis and inertia
 forces .  A simply supported shell with the following characteristics

 L / R  5  2 ,  t  / R  5  0 ? 01 ,  r i  / r s  5  0 ? 128 ,  n  5  5
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 Figure 5(a) .  Natural frequencies of an empty and liquid-filled open cylindrical shell with  W  5  V  5  0 at the
 four edges as a function of circumferential mode number .

 has been analysed ,  to see the influence of the speed of the flow  U x i   on the frequencies
 (internal flow) .  The dimensionless parameters of frequency and velocity are  v #  5  v  / v  0
 and  U #  5  U  / U 0  ,  where

 v  0  5
 π  2

 L 2  S  K
 r s t
 D 1/2

 ,  K  5
 Et 3

 12(1  2  …  2 )
 ,  U 0  5

 π  2

 L
 S  K

 r s t
 D 1/2

 ;

 v   and  U  are respectively the natural frequency and the velocity of the flowing fluid .
 The results are compared to a previous analysis by Weaver & Unny (1973) in Figure

 8 .  We observe that the natural frequencies decrease with flow velocity .  At zero flow
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 Figure 5(b) .  The circumferential shapes of a liquid-filled open cylindrical shell with  W  5  V  5  0 at the four
 edges for  n  5  4 ,  5 and  m  5  1 .
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 T ABLE  3
 Material and physical properties of the shell ;   R  5  0 ? 235  m ,   t  5  0 ? 00235  m ,   r s  5  7850  N / m 3 ,

 r f  5  1000  N / m 3

 E x
 ( 3 10 1 1  N / m 2 )

 E θ
 ( 3 10 1 1  N / m 2 )

 G
 ( 3 10 1 1  N / m 2 )

 … x  … θ

 Isotropy
 Orthotropy

 21 ? 981
 1 ? 0

 21 ? 981
 0 ? 5

 0 ? 8454
 0 ? 1

 0 ? 3
 0 ? 05

 0 ? 3
 0 ? 025

 T ABLE  4
 Frequency values (Hz) for simply supported cylindrical shells ,  empty and filled with liquid

 Material  L / R  ( n ,  m )  Theory  Empty  Inside and
 outside

 fluid (full)

 Inside
 fluid

 Outside
 fluid

 Isotropic  4

 (4 ,  1)

 (8 ,  1)

 Present method
 Ramachandran (1979)
 Lakis (1976a)*
 Present method
 Ramachandran (1979)
 Lakis (1976a)*

 659
 700
 659

 2187
 2200
 2177

 251 ? 4
 294 ? 2
 251 ? 7

 1064
 944 ? 1

 1073

 333 ? 2
 —

 333 ? 8
 1361

 —
 1362

 331 ? 4
 —

 331 ? 7
 1361

 —
 1360

 Orthotropic  2

 (4 ,  1)

 (8 ,  1)

 Present method
 Ramachandran (1979)
 Lakis (1976a)*
 Present method
 Ramachandran (1979)
 Lakis (1976a)*

 240 ? 1
 —
 238 ? 8
 327 ? 3
 —
 324 ? 1

 92 ? 2
 183 ? 1
 92 ? 4

 158 ? 5
 248 ? 5
 160 ? 7

 121 ? 9
 —

 121 ? 7
 203 ? 3
 —

 203 ? 2

 121 ? 6
 —

 121 ? 9
 200 ? 2
 —

 203 ? 9

 *  These results are computed from a computer program developed by Lakis and his co-workers and based
 on the theory presented in Lakis (1976a) .
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 velocity ,  the two methods give the same results but ,  as the flow velocity increases the
 two term Galerkin method used by Weaver & Unny (1973) generates significantly
 dif ferent results from those of the present hybrid finite element method .  This is due to
 the limitations associated with the use of too few terms in the application of Galerkin’s
 method .

 One of the most important criteria in determining the versatility of a method is the
 capacity to predict ,  with precision ,  both the high and low frequencies .  Satisfaction of
 this criterion demands the use of a great many terms in Galerkin’s method .  The choice
 of the displacement functions which are derived from Sanders’ (1959) classical shell
 theory enables our hybrid finite element model to give good values for the frequencies ,
 low as well as high ,  with a small number of finite elements .

 Our results predict that the first mode frequency becomes negative imaginary at
 U #  5  3 ? 1 ,  indicating static divergence instability in this mode .  If the velocity is
 increased further ,  the first mode reappears and coalesces at  U #  5  3 ? 95 with that of the
 second mode to produce coupled mode flutter .

 6 . 3 . 2 .  Totally submerged open cylindrical shell subjected simultaneously to an internal
 and external flow

 An open cylindrical shell subjected simultaneously to an internal and external flow has
 been analysed .  In this case there are no ef fects of the free surface because the shell is
 totally submerged in the flowing liquid .  The data for the shell are as follows :

 R  / t  5  165 ,  L / R  5  6 ? 2 ,  f T  5  180 8  r f  / r s  5  0 ? 128 ,  …  5  0 ? 29 .

 We present here an examination of the natural frequencies of the system as functions
 of the flow velocity ,  and thereby a determination of the ef fect of flow on the dynamic
 behaviour of the system .

 (a)  Simply supported — simply supported shell

 A simply supported open cylindrical shell containing flowing fluid (internal and
 external) has been analysed .  Figure 9 shows the frequencies of the system as a function
 of the flow velocity .  As the velocity increases from zero ,  the frequencies associated
 with all modes decrease ;  they remain real (the system being conservative) until ,  at
 suf ficiently high velocities ,  they vanish ,  indicating the existence of a buckling-type
 (divergence) instability .  At higher flow velocity the frequencies become purely
 imaginary .  We predict the first loss of stability at a flow velocity equal to  U #  5  7 ? 75 for
 the mode ( m  5  1 ,  n  5  4) .

 (b)  Free  – free shell

 The case of an open cylindrical shell having its straight edges free and the curved
 edges freely simply supported has been studied by means of the present theory .  Figure
 10 shows that natural frequencies associated with all modes decrease with increasing
 flow velocity until ,  at a value of  U #  5  8 ? 5 ,  the system buckles in the ( m  5  1 , n  5  6)
 mode .

 (c)  Clamped  – clamped shell

 The calculations were performed for one open cylindrical shell having its straight
 edge clamped and the curved edges freely simply supported .  Here ,  we study the
 influence of the flow velocity on the dynamic stability of the open shell containing
 internal and external flow .  We observe in Figure 11 that the frequencies associated
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 with all modes decrease with increasing flow velocity ,  and similarly to the case of
 simply supported – simply supported and free – free open shells ,  the frequencies remain
 real until at a suf ficiently high velocity ,  they vanish ,  indicating the instability .  For the
 stipulated boundary conditions ,  we predict the first loss of instability at  U #  5  8 ? 25 for the
 mode ( m  5  1 , n  5  4) .

 Finally ,  we observe in Figures 9 ,  10 and 11 that lower values of axial mode  m  given
 higher critical velocities .

 (d)  Comparison between the boundary conditions

 In order to establish the ef fects of boundary conditions on the critical flow velocities
 which render the system dynamically unstable ,  we turn to Figure 12 .  We observe for
 the same mode and the same open shell with dif ferent boundary conditions ,  that the
 shell with free – free boundary conditions in its straight edges is the one which loses
 dynamic stability first .

 For the mode ( m  5  1 , n  5  7) we have critical velocities as follows .  For the free – free
 shell :   U #  5  15 ? 5 ;  for the simply supported – simply supported shell :   U #  5  24 ? 4 ;  and for the
 clamped – clamped shell :   U #  5  29 .  For the mode ( m  5  2 , n  5  7) ,  we have respectively
 U #  5  8 ? 5 ,  11 ? 5 ,  and 12 . 5 .

 7 .  CONCLUSIONS

 The theory developed in this paper is used to predict the ef fects of inertia ,  Coriolis and
 centrifugal forces on the vibration characteristics of totally submerged anisotropic open
 and closed cylindrical shells ,  subjected simultaneously to an internal and external flow .

 A cylindrical panel finite element was developed ,  making possible the derivation of
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 the displacement functions from the equations of motion of the shell .  The mass and
 stif fness of each element were obtained by exact analytical integration .

 The fluid pressure was derived from the velocity potential and from the linear
 impermeability and dynamic conditions applied to the shell – fluid interface .  The finite
 element method was used to obtain the mass ,  stif fness and damping of fluid elements .
 The results obtained by this method were compared with other investigations ,  and
 satisfactory agreement was obtained .  This method combines the advantages of finite
 element analysis which deals with complex shells ,  and the precision of formulation
 which the use of displacement functions derived from shell and fluid theories
 contributes .

 This method enables us to predict the vibrational characteristics of circumferentially
 nonuniform open and closed cylindrical shells subjected to a flowing fluid .  In addition ,
 this theory may be applied to a curved plate subjected to a flowing fluid in the case of
 large values of the shell radius .
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 APPENDIX A :  EQUATIONS OF MOTION

 This appendix contains the equations of motion for a thin anisotropic cylindrical shell ;  they are
 the following [see equation (1)] :
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 APPENDIX B :  MATRIX [ Q ] (6 3 8)

 The elements of the matrix are given by

 Q (1 ,  j )  5  A j e
 n j θ  ,  Q (4 ,  j )  5  D j e

 h j θ  ,

 Q (2 ,  j )  5  B j e
 h j θ  ,  Q (5 ,  j )  5  E j e

 h j θ  ,

 Q (3 ,  j )  5  C j e
 h j θ  ,  Q (6 ,  j )  5  F j e

 h j θ .

 The terms  A j  , B j  , C j  , D j  , E j   and  F j   (  j  5  1 ,  .  .  .  ,  8) may be expressed as follows :
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 APPENDIX C :  NOMENCLATURE

 A ,  B ,  C  constants in equations defining  U , V , W  respectively
 a 1 / a 2  liquid-level ratio for an open cylindrical shell
 c  velocity of sound in fluid
 d 1 / d  liquid level ratio for closed cylindrical shell
 E  Young’s modulus
 e  exponential
 i  i 2  5  2 1
 J i h j  Bessel function of the first kind and of order i h j
 K  bending stif fness ,   Et 3 / 12(1  2  …  2 )
 L  length of the shell
 m  axial mode number
 n  circumferential mode number
 P u  lateral pressure exerted on the shell ,   u  5  i  for internal pressure and  u  5  e  for

 external pressure
 p i j  terms of elasticity matrix ( i  5  1 ,  .  .  .  ,  6 ;   j  5  1 ,  .  .  .  ,  6)
 R  mean radius of the shell
 R j  solution of Bessel equation (27)
 S j  defined by equation (24)
 t  thickness of the shell
 U ,  V ,  W  axial ,  tangential and radial displacements
 U x u  velocity of the liquid
 U 0  defined by ( π  2 / L )( K  / r s t )

 1 / 2

 U #  dimensionless velocity ,   U x u  / U 0
 V x  ,  V θ  ,  V r  axial ,  tangential and radial fluid velocity (17)
 x  axial coordinate
 Y i h j  Bessel function of the second kind and of order  i h j
 Z u j  defined by equation (29) for  u  5  i  and equation (30) for  u  5  e
 » x  ,  » θ  ,  » #  x θ  deformation of reference surface
 h i  complex roots of the characteristic equation
 θ  circumferential coordinate
 k x  ,  k  θ  ,  k #  x θ  changes in curvature and torsion of reference surface
 …  Poisson’s ratio
 r s  density of the shell material
 r f  density of fluid ,   f  5  i  for internal fluid and  f  5  e  for external fluid
 f  angle for one finite element
 f T  angle for the whole open shell
 F  velocity potential
 v  natural frequency (rad / s)
 v  0  defined by ( π  2 / L 2 )( K  / r s t )

 1/2

 v #  dimensionless frequency ,   v  / v  0

 List of matrices

 [ A ]  defined by equation (9)
 [ B ]  defined by equation (11)
 [ c f  ]  damping matrix for a fluid finite element
 [ C f  ]  damping matrix for the whole fluid
 h C j  vector of arbitrary constants
 [ D f  ]  defined by equation (36)
 [ G f  ]  defined by equation (37)
 [ k f  ]  stif fness matrix for a fluid finite element
 [ k s ]  stif fness matrix for a shell finite element
 [ K f  ]  stif fness matrix for the whole fluid
 [ K s ]  stif fness matrix for the whole shell
 [ m f  ]  mass matrix for a fluid finite element
 [ m s ]  mass matrix for a shell finite element
 [ M f  ]  mass matrix for the whole fluid
 [ M s ]  mass matrix for the whole shell
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 [ N ]  displacement function defined by equation (10)
 [ P ]  elasticity matrix
 [ Q ]  defined by equation (11)
 [ R ]  defined by equation (6)
 [ S f  ]  defined by equation (35)
 [ T m ]  defined by equation (3)
 h d i j  degree of freedom at node i
 h »  j  deformation vector
 h s  j  stress vector


